193 research outputs found

    Design methodology for ontology-based multi-agent applications (MOMA)

    Full text link
    Software agents and multi-agent systems (MAS) have grown into a very active area of research and commercial development activity. There are many current emerging real-world applications spanning multitude of diverse domains. In the context of agents, ontology has been widely recognised for their significant benefits to interoperability, reusability, and both development and operational aspects of agent systems and applications. Ontology-based multi-agent systems (OBMAS) exploit these advantages in providing intelligent and semantically aware applications. In addressing the lack of support for ontology in existing methodologies for multi-agent development, this thesis proposes a design methodology for the building of such intelligent multi-agent applications called MOMA. This alternative approach focuses on the development of ontology as the driving force of the development process. By allowing the domain and characteristics of utilisation and experimentation to be dictated through ontology, researchers and domain experts can specify the agent application without any knowledge of agent design and lower level programming. Through the use of a structured ontology model and the use of integrated tools, this approach contributes towards the building of semantically aware intelligent applications for use by researchers and domain experts. MOMA is evaluated through case studies in two different domains: financial services and e-Health

    Design and development of financial applications using ontology-based multi-agent systems

    Get PDF
    Researchers in the field of finance now use increasingly sophisticated mathematical models that require intelligent software on high performance computing systems. Agent models to date that are designed for financial markets have their knowledge specified through low level programming that require technical expertise in software, not normally available with finance professionals. Hence there is a need for system development methodologies where domain experts and researchers and can specify the behaviour of the agent applications without any knowledge of the underlying agent software. This paper proposes an approach to achieve the above objectives through the use of ontologies that drive the behaviours of agents. This approach contributes towards the building of semantically aware intelligent services, where ontologies are used rather than low level programming to dictate the characteristics of the agent applications. This approach is expected to allow more extensive usage of multi-agent systems in financial business applications

    Ca2+ Cycling in Heart Cells from Ground Squirrels: Adaptive Strategies for Intracellular Ca2+ Homeostasis

    Get PDF
    Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca2+ homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca2+ current (ICa) was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of ICa did not compromise the Ca2+-induced Ca2+ release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of ICa. Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca2+ removal were more rapid in ground squirrels. Ca2+ sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high ICa threshold, low SR Ca2+ leak and rapid cytosolic Ca2+ clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca2+ homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca2+ overload-related heart diseases

    The role of self-gentrification in sustainable tourism: Indigenous entrepreneurship at Honghe Hani Rice Terraces World Heritage Site, China

    Get PDF
    This article examines three forms of tourism gentrification occurring within the newly inscribed (2013) Honghe Hani Rice Terraces UNESCO World Heritage Site in Yunnan, China. The indigenous Hani and Yi communities who populate this remote mountainous area, possess distinct cultural practices that have supported the rice terrace ecosystem for centuries. This article draws on interviews and non-participant observation conducted with inhabitants and newcomers to analyse the types of gentrification occurring within the site. We argue that indigenous cultural practices, and consequently rice cultivation in the area, are threatened by gentrifier-led and state-led gentrification combined with high levels of outward migration of indigenous persons. This could pose a significant threat to the sustainability of tourism at this site and may ultimately compromise the site’s World Heritage Status. In the midst of these dangers, some indigenous people are shown to be improving their socioeconomic standing – and becoming “middle class” or “gentry” – particularly through adopting entrepreneurial strategies gleaned from their encounters with outside-gentrifiers and tourists. This article proposes the concept of “self-gentrification” as a way to describe individuals who seek to improve themselves and their own community, while under threat of gentrification

    Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population

    Get PDF
    Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi-tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers.Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (F(ST) value of 0.302). Moderate genetic diversity at the population level (H(S) of 0.516) and high population diversity at the species level (H(T) of 0.749) were detected. Significant excess homozygosity (F(IS) of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm.Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of this species and for improving the genetic basis for breeding its cultivars

    arrayMap: A Reference Resource for Genomic Copy Number Imbalances in Human Malignancies

    Get PDF
    Background: The delineation of genomic copy number abnormalities (CNAs) from cancer samples has been instrumental for identification of tumor suppressor genes and oncogenes and proven useful for clinical marker detection. An increasing number of projects have mapped CNAs using high-resolution microarray based techniques. So far, no single resource does provide a global collection of readily accessible oncoge- nomic array data. Methodology/Principal Findings: We here present arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer. The arrayMap database provides a platform for meta-analysis and systems level data integration of high-resolution oncogenomic CNA data. To date, the resource incorporates more than 40,000 arrays in 224 cancer types extracted from several resources, including the NCBI's Gene Expression Omnibus (GEO), EBIs ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication supplements and direct submissions. For the majority of the included datasets, probe level and integrated visualization facilitate gene level and genome wide data re- view. Results from multi-case selections can be connected to downstream data analysis and visualization tools. Conclusions/Significance: To our knowledge, currently no data source provides an extensive collection of high resolution oncogenomic CNA data which readily could be used for genomic feature mining, across a representative range of cancer entities. arrayMap represents our effort for providing a long term platform for oncogenomic CNA data independent of specific platform considerations or specific project dependence. The online database can be accessed at http://www.arraymap.org.Comment: 17 pages, 5 inline figures, 3 tables, supplementary figures/tables split into 4 PDF files; manuscript submitted to PLoS ON

    Control of Precursor Maturation and Disposal Is an Early Regulative Mechanism in the Normal Insulin Production of Pancreatic β-Cells

    Get PDF
    The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2+/Akita mice in response to a mutation (C96Y) in the insulin 2 (Ins2) gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO). Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER) and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (a)typical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis
    corecore